Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dairy Sci ; 103(6): 4895-4906, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32229112

RESUMO

The objective of this study was to evaluate the protection conferred by lactoferrin, α-lactalbumin, and ß-lactoglobulin in cerebral ischemia reperfusion (I/R) injury. Rat pheochromocytoma (PC12) cells were used to construct an oxygen and glucose deprivation model in vitro, and ICR mice underwent carotid artery "ligation-relaxation" to construct a cerebral I/R injury model in vivo. The levels of toll-like receptor 4 (TLR4) and downstream factors including nuclear factor-κB, tumor necrosis factor-α, and IL-1ß were measured. Metabonomics detection and data mining were conducted to identify the specific metabolic sponsor of the 3 proteins. The results showed that lactoferrin, α-lactalbumin, and ß-lactoglobulin protected neurons from cerebral I/R injury by increasing the level of bopindolol and subsequently inhibiting the TLR4-related pathway to different degrees; ß-lactoglobulin had the strongest activity of the 3 proteins. In summary, this study is the first to investigate and compare the protective effects of lactoferrin, α-lactalbumin, and ß-lactoglobulin in a cerebral stroke model. The results implicate TLR4 as a novel target of the 3 bioactive proteins to prevent cerebral I/R injury.


Assuntos
Lactalbumina/uso terapêutico , Lactoferrina/uso terapêutico , Lactoglobulinas/uso terapêutico , Traumatismo por Reperfusão/prevenção & controle , Animais , Glucose/metabolismo , Interleucina-1beta/metabolismo , Lactalbumina/metabolismo , Lactoferrina/metabolismo , Lactoglobulinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , NF-kappa B/metabolismo , Oxigênio/metabolismo , Células PC12 , Ratos , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
2.
J Dairy Sci ; 103(2): 1151-1163, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31837800

RESUMO

This study aimed to investigate the modulation activity of heated and nonheated lactoferrins in an inflammatory pathway in anoxia and reoxygenation cell and cerebral ischemic reperfusion mouse models. Rat pheochromocytoma 12 (PC-12) cells were subjected to oxygen and glucose deprivation in vitro to construct an anoxia and reoxygenation cell model, and Institute for Cancer Research (ICR) mice were given carotid artery "ligation-relaxation" in vivo to construct a cerebral ischemic reperfusion mouse model. The protein levels of toll-like receptor 4 (TLR-4) and downstream inflammatory proteins including nuclear factor-κB (NF-κB), tumor necrosis factor-α (TNF-α), and IL-1ß were detected. Meanwhile, metabonomic detection of overall metabolites of PC-12 cells was performed to screen out the specific changed metabolite affected by lactoferrin at the condition of anoxia and reoxygenation. The results showed that lactoferrin could inhibit the TLR-4-related pathway triggered by anoxia and reoxygenation and ischemic reperfusion. A total of 41 significantly changed metabolites were identified by metabonomic analysis, and glutathione was seen as a metabolite of interest in suppressing TLR-4-related pathway in anoxia and reoxygenation cell models. However, heated lactoferrin lost the ability of attenuating the TLR-4-related pathway. The loss of modulation activity of heated lactoferrin might be due to its protein aggregation, which was evidenced by larger average particle diameter than the unheated lactoferrin. This study is the first to investigate the effect of heat treatment on the modulation activity of lactoferrin in the TLR-4-related pathway in anoxia and reoxygenation cell and cerebral ischemic reperfusion mouse models, and indicate that lactoferrin may serve as a dietary intervention for cerebral ischemia.


Assuntos
Isquemia Encefálica/metabolismo , Hipóxia Celular , Hipóxia-Isquemia Encefálica/metabolismo , Lactoferrina/farmacologia , Receptor 4 Toll-Like/metabolismo , Animais , Isquemia Encefálica/prevenção & controle , Modelos Animais de Doenças , Glucose/farmacologia , Lactoferrina/química , Masculino , Camundongos , Camundongos Endogâmicos ICR , NF-kappa B/metabolismo , Oxigênio/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Temperatura , Fator de Necrose Tumoral alfa/metabolismo
3.
J Agric Food Chem ; 67(1): 140-147, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30418775

RESUMO

To investigate the effect of heat treatment on the antitumor activity of lactoferrin in colon cancer cells and colon tumors, the HT-29 (human intestinal epithelial tumor cell) cell line was exposed to lactoferrin and various heat treatments. The impacts on cell proliferation, invasion, and migration were observed in vitro, and nude mice bearing HT29 tumors were administered lactoferrin and underwent various heat treatments in vivo. In the HT29 cell proliferation test using transwell and scratch analyses, lactoferrin (20 mg/mL) without or with heat treatment (50 and 70 °C) significantly inhibited cell proliferation, migration, and invasion (compared with the control, p < 0.05), while lactoferrin with heat treatment (100 °C) did not affect these parameters. In vivo, HT29 tumor weight was significantly reduced in the lactoferrin (without heat treatment and with 50 and 70 °C treatment) groups (1.59 ± 0.20, 1.67 ± 0.25, and 2.41 ± 0.42 g, compared with the control, p < 0.05), and there was no significant difference between the control (3.73 ± 0.33 g) and the 100 °C treatment group (3.58 ± 0.29 g). Moreover, 100 °C heat treatment reduced inhibition of the VEGFR2/VEGFA/PI3K/Akt/Erk1/2 angiogenesis pathway by lactoferrin. In summary, HT29 tumors were effectively suppressed by lactoferrin via inhibition of VEGFR2/VEGFA/PI3K/Akt/Erk1/2 pathway, and heat treatment affected the antitumor activity of lactoferrin in a temperature-dependent manner.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias do Colo/tratamento farmacológico , Lactoferrina/administração & dosagem , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/fisiopatologia , Células HT29 , Temperatura Alta , Humanos , Lactoferrina/química , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...